रचनाएँ { Constructions } [ Class 9, Chapter 11 ]

Share:

● दिए गए कोण (<PQR) के समद्विभाजक की रचना : -

* Q को केंद्र मानकर कोई भी त्रिज्या लेकर किरण QR और QP पर चाप लगाओ जो क्रमशः S और T पर प्रतिच्छेद करे।
* अब बिंदु S और T को केंद्र मानकर ST के आधे से अधिक लंबी त्रिज्या लेकर चाप लगाओ जो बिंदु K पर प्रतिच्छेद करती हैं।
* बिंदु Q और K को मिलाकर किरण QK खींचो।
किरण QK दिए गए कोण <ABC का समद्विभाजक है।

Constructions Class 9 Chapter 11

● दिए गए रेखाखंड (LM) के लंब समद्विभाजक की रचना :-

* L और M को केंद्र मानकर LM के आधे से अधिक त्रिज्या लेकर LM के दोनों ओर प्रतिच्छेद करती हुई चाप खींचो।
* माना प्रतिच्छेद बिंदु P और Q हैं, तो P और Q को मिलाओ।
* माना PQ रेखाखंड LM को बिंदु O पर काटता है, तो खींची गई रेखा POQ रेखाखंड LM का लंब समद्विभाजक होगा।


● 60° के कोण की रचना :-

* दी गई किरण AB पर A को केंद्र मानकर कोई भी त्रिज्या लीजिये और एक वृत्त का चाप खींचिए। माना यह चाप AB को बिंदु P पर काटती है।
* P को केंद्र मानकर पहले वाली त्रिज्या से एक चाप खींचो जो पहले वाली चाप को माना Q बिंदु पर काटती है।
* A और Q को मिलाते हुए AQC खींचो।
<CAB = 60°


● यदि किसी त्रिभुज की दो भुजाएँ और एक कोण (जोकि बीच का कोण) नहीं है, तो अद्वितीय रूप से सर्वांगसम त्रिभुज की रचना कर पाना सदैव सम्भव नहीं है।

● किसी त्रिभुज का आधार, आधार कोण और दो आसन्न भुजाओं का योग दिया होने पर उस त्रिभुज की रचना के चरण :-

(माना ∆ABC में आधार BC, आधार कोण <B और दो आसन्न भुजाओं का योग AB + AC दिया है।)
* आधार BC खींचकर B बिंदु पर दिया गया कोण <RBC बनाइये।
* किरण RB पर AB + AC के बराबर लंबाई लेकर कोई बिंदु M लेकर BM खींचिए।
* BM का लंब समद्विभाजक खींचिए, जो BM को A बिंदु पर काटता है।
* AC को मिलाइये।
∆ABC अभीष्ट त्रिभुज है।


● किसी त्रिभुज का आधार, आधार कोण और दो आसन्न भुजाओं का अंतर दिया होने पर उस त्रिभुज की रचना के चरण :-

(माना ∆ABC में आधार BC, आधार कोण <B और दो आसन्न भुजाओं का अंतर AB - AC दिया है।)
* आधार BC खींचकर बिंदु B पर दिया गया कोण <XBC बनाइये।
* किरण BX में से AB - AC के बराबर BD लीजिये।
* CD को मिलाइये और इसका लंब समद्विभाजक PQ खींचिए।
* माना लंब समद्विभाजक PQ BX को बिंदु A पर काटता है।
∆ABC अभीष्ट त्रिभुज है।


● किसी त्रिभुज का परिमाप और दोनों आधार कोण दिये होने पर उस त्रिभुज की रचना के चरण:-

(माना ∆ABC में परिमाप (AB + BC + CA) और <A तथा <B दिया है।)
* AB + BC + CA के बराबर XY खींचो।
* <B और <C के बराबर क्रमशः <LXY और <MXY बनाओ।
* <LXY और <MXY दोनों को समद्विभाजित करो जहाँ कोणों की समद्विभाजक किरणें बिंदु A पर प्रतिच्छेद करती हैं।
* AX और AY के लंब समद्विभाजक खींचो जो XY को क्रमशः बिंदु B और C पर प्रतिच्छेद करते हैं।
∆ABC अभीष्ट त्रिभुज है।
ध्यान रखें : उस त्रिभुज की रचना कर पाना असंभव है जिसमें AB + BC = AC या AB + BC < AC हो।


All Chapters Notes in Hindi Maths Class 9th


अध्याय 1 संख्या पद्धति
अध्याय 2 बहुपद
अध्याय 3 निर्देशांक ज्यामिति
अध्याय 4 दो चरों वाले रैखिक समीकरण
अध्याय 5 यूक्लिड की ज्यामिति का परिचय
अध्याय 6 रेखाएँ और कोण
अध्याय 7 त्रिभुज
अध्याय 8 चतुर्भुज
अध्याय 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
अध्याय 10 वृत्त
अध्याय 11 रचनाएँ
अध्याय 12 हीरोन का सूत्र
अध्याय 13 पृष्ठीय क्षेत्रफल और आयतन
अध्याय 14 सांख्यिकी
अध्याय 15 प्रायिकता

कोई टिप्पणी नहीं

Thanks for your comments !